Duration: 5 nours	Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carried	
14 marks and have an internal choice	e of Questions.
2. All parts of Question must be answer	red in one place.

II B.Tech - I Semester – Regular Examinations - FEBRUARY 2022

DISCRETE MATHEMATICAL STRUCTURES

(Common for CSE, IT)

UNIT – I

- a) Construct the truth table for the following proposition. 7 M 1. $[(p \to r) \land (q \to r)] \to ((p \lor q) \to r).$
 - b) Find the principal disjunctive normal form of the 7 M following expression.

$$p \to [(p \to q) \land \neg (\neg q \lor \neg p)].$$

OR

- a) Prove that the following equivalent formulas by using 2. 7 M truth tables.
 - (i) $p \lor (p \land q) \Leftrightarrow p$.
 - (ii) $p \lor (\neg p \land q) \Leftrightarrow (p \lor q)$.
 - b) Find the principal conjunctive normal form of the 7 M following expression.

$$(\neg p \lor \neg q) \rightarrow (p \rightleftharpoons \neg q).$$

UNIT - II

3. a) Show that, "w" is a valid conclusion from the following 7 M premises.

 $\neg t \rightarrow \neg r$, $\neg s$, $t \rightarrow w$, and $r \lor s$.

Duration 2 hours

Mar Maulta, 70

	b) Verify the validity of the following argument.	7 M
	Premises: All fathers are males.	
	Some students are fathers.	
	Conclusion: All students are males.	
	OR	
4.	a) Verify the validity of the following argument.	7 M
	Premises : If the patient has a virus, then he must have	
	a temperature above 99 ⁰ .	
	The patient's temperature is not above 99 ⁰ .	
	Conclusion: The patient has a virus.	
	b) Show that	7 M
	$(\exists x) \ (\ p(x) \land q(x) \) \ \Rightarrow \ (\exists x) \ p(x) \land (\exists x) \ q(x).$	
	UNIT-III	
5.	Solve the recurrence relation	14 M
	$a_{n+1} - 10 a_n + 9 a_{n-1} = 5 \times 9^n$, $n \ge 1$,	
	where $a_0 = 1$, $a_1 = 4$.	
OR		
6.	Solve the recurrence relation	14 M
	$a_{n+2} - 6 a_{n+1} + 9 a_n = 10 \times 3^n$, $n \ge 0$.	
$\underline{\mathbf{UNIT}} - \mathbf{IV}$		
7.	a) (i) Define an equivalence relation.	7 M
	(ii) Let A be the set of positive integers and R be a	
	relation on A defined by	
	$R = \{ (a, b) \mid a \text{ divides } b \}.$	
	Then verify R is an equivalence relation or not.	
	b) Define the Hasse diagram of a poset and draw the	7 M
	Hasse diagram of the poset $[P(X), \subseteq]$.	
	Where $X = \{a, b, c\}$ and $P(X)$ is the collection of all	
	subsets of X.	
	Page 2 of 3	

OR

8. a) Define transitive closure of a relation and find the 7 M transitive closure of the relation R,

where $R = \{ (a, b), (b, c), (c, d), (d, e), (e, a) \}.$

b) Let $A = \{1, 2, 3, 4, 5\}$ and R be a relation on A = 7 M defined by $R = \{(x, y) \mid x \ge y\}$. Then verify R is a partial order relation or not.

<u>UNIT – V</u>

- 9. a) Define the following with an example. 7 M
 - (i) degree of a vertex
 - (ii) complete graph
 - (iii) plane graph.
 - b) Explain Breadth First Search algorithm with an 7 M example.

OR

10. a) Verify the following graphs are isomorphic or not. 7 M

b) Define tree and draw at least 5 trees with 6 vertices. 7 M