II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

DISCRETE MATHEMATICAL STRUCTURES (Common for CSE, IT)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Construct the truth table for the following proposition.

$$
[(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow((p \vee q) \rightarrow r)
$$

b) Find the principal disjunctive normal form of the 7 M following expression.

$$
p \rightarrow[(p \rightarrow q) \wedge \neg(\neg q \vee \neg p)]
$$

2. a) Prove that the following equivalent formulas by using 7 M truth tables.
(i) $p \vee(p \wedge q) \Leftrightarrow p$.
(ii) $p \vee(\neg p \wedge q) \Leftrightarrow(p \vee q)$.
b) Find the principal conjunctive normal form of the 7 M following expression.

$$
\begin{gathered}
(\neg p \vee \neg q) \rightarrow(p \rightleftarrows \neg q) . \\
\underline{\mathbf{U N I T}} \mathbf{- \mathbf { I I }}
\end{gathered}
$$

3. a) Show that, " w " is a valid conclusion from the following 7 M premises.
$\neg t \rightarrow \neg r, \neg s, \quad t \rightarrow w$, and $r \vee s$.
b) Verify the validity of the following argument.

Premises: All fathers are males.
Some students are fathers.
Conclusion: All students are males.
OR
4. a) Verify the validity of the following argument.

7 M
Premises : If the patient has a virus, then he must have a temperature above 99°.
The patient's temperature is not above 99^{0}.
Conclusion: The patient has a virus.
b) Show that

$$
(\exists x)(p(x) \wedge q(x)) \Rightarrow(\exists x) p(x) \wedge(\exists x) q(x) .
$$

UNIT-III

5. Solve the recurrence relation

$$
a_{n+1}-10 a_{n}+9 a_{n-1}=5 \times 9^{n}, n \geq 1,
$$

where $a_{0}=1, a_{1}=4$.
OR
6. Solve the recurrence relation 14 M

$$
a_{n+2}-6 a_{n+1}+9 a_{n}=10 \times 3^{n}, n \geq 0
$$

UNIT - IV
7. a) (i) Define an equivalence relation.
(ii) Let A be the set of positive integers and R be a relation on A defined by

$$
R=\{(a, b) \mid \text { a divides } b\} .
$$

Then verify R is an equivalence relation or not.
b) Define the Hasse diagram of a poset and draw the 7 M Hasse diagram of the poset $[P(X), \subseteq]$.
Where $X=\{a, b, c\}$ and $P(X)$ is the collection of all subsets of X.

OR

8. a) Define transitive closure of a relation and find the 7 M transitive closure of the relation R, where $R=\{(a, b),(b, c),(c, d),(d, e),(e, a)\}$.
b) Let $A=\{1,2,3,4,5\}$ and R be a relation on $A 7 \mathrm{M}$ defined by $R=\{(x, y) \mid x \geq y\}$.
Then verify R is a partial order relation or not.

UNIT - V

9. a) Define the following with an example.
(i) degree of a vertex
(ii) complete graph
(iii) plane graph.
b) Explain Breadth First Search algorithm with an 7 M example.

OR

10. a) Verify the following graphs are isomorphic or not.

b) Define tree and draw at least 5 trees with 6 vertices.
